Organization of the cytoskeleton in resting, discoid platelets: preservation of actin filaments by a modified fixation that prevents osmium damage

نویسندگان

  • J Boyles
  • J E Fox
  • D R Phillips
  • P E Stenberg
چکیده

This study evaluates the structural organization of the cytoskeleton within unactivated, discoid platelets. Previously, such studies have been difficult to interpret because of the ease with which platelets are stimulated, the sensitivity of actin filaments to cell extraction buffers, and the general problem of preserving actin filaments with conventional fixatives, compounded by the density of the cytoplasm in the platelet. In this study we have employed a new fixative containing lysine, which protects actin filaments against damage during fixation and thin-section processing. We used thick (0.25-micron) sections and conventional thin sections of extracted cells (fixed and lysed simultaneously by the addition of 1% Triton X-100 to the initial fixative) as well as thin sections of whole cells to examine three preparations of human platelets: discoid platelets washed by sedimentation; discoid platelets isolated by gel filtration; and circulating platelets collected by dripping blood directly from a vein into fixative. In all of these preparations, long, interwoven actin filaments were observed within the platelet and were particularly concentrated beneath the plasma membrane. These filaments appeared to be linked at irregular intervals to the membrane and to each other via short, approximately 20- to 50-nm-long cross-links of variable width. Although most filaments were outside the circumferential band of microtubules and the cisternae of the open canalicular system, individual filaments dipped down into the cytoplasm and were found between the microtubules and in association with other membranes. The ease with which single actin filaments can be seen in the dense cytoplasm of the human platelet after lysine/aldehyde fixation suggests the great potential of this new fixative for other cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of shape change in chilled human platelets.

The so-called cold activation of platelets that precludes refrigeration of platelets for storage has long been recognized, but its mechanism has remained a mystery. Cooling of discoid resting platelets to temperatures below 15 degrees C causes shape distortions, and the chilled cells rewarmed to above 25 degrees C are spheres rather than discs. As platelet shape change responsive to receptor ac...

متن کامل

Actin filament content and organization in unstimulated platelets

The extent of actin polymerization in unstimulated, discoid platelets was measured by DNase I inhibition assay in Triton X-100 lysates of platelets washed at 37 degrees C by gel filtration, or in Triton X-100 lysates of platelets washed at ambient temperatures by centrifugation in the presence of prostacyclin. About 40% of the actin in the discoid platelets obtained by either method existed as ...

متن کامل

Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein

Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity per...

متن کامل

Thrombin-induced GPIb-IX centralization on the platelet surface requires actin assembly and myosin II activation.

In resting platelets, the GPIb-IX complex, the receptor for the von Willebrand factor (vWF), is linked to underlying actin filaments by actin-binding protein (ABP-280). Thrombin stimulation of human platelets leads to a decrease in the surface expression of the GPIb-IX complex, which is redistributed from the platelet surface into the open canalicular system (OCS). Because the centralization of...

متن کامل

I-6: Role of Actin Cytoskeleton during Mouse Sperm Acrosomal Exocytosis

Background: Mammalian sperm must undergo a process termed capacitation to become competent to fertilize an egg. Capacitation renders the sperm competent by priming the cells to undergo a rapid exocytotic event called acrosomal exocytosis that is stimulated by the zona pellucida (ZP) of the egg or progesterone. Over the years, several biochemical events have been associated with the capacitation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 101  شماره 

صفحات  -

تاریخ انتشار 1985